If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3y^2=572
We move all terms to the left:
3y^2-(572)=0
a = 3; b = 0; c = -572;
Δ = b2-4ac
Δ = 02-4·3·(-572)
Δ = 6864
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{6864}=\sqrt{16*429}=\sqrt{16}*\sqrt{429}=4\sqrt{429}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{429}}{2*3}=\frac{0-4\sqrt{429}}{6} =-\frac{4\sqrt{429}}{6} =-\frac{2\sqrt{429}}{3} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{429}}{2*3}=\frac{0+4\sqrt{429}}{6} =\frac{4\sqrt{429}}{6} =\frac{2\sqrt{429}}{3} $
| 7z-^2-343=0 | | 5x=4=2x+14 | | 6x-15=-153 | | 27=-23+25n | | 5-2m=8 | | 5x-7=-3+2(4+x) | | 1700=2.5x | | 1700=2x+1 | | 5x+45=110 | | 4(x+9)=40 | | 11h=82.5 | | 1b/3+4=14 | | 7x19=-2x+55 | | m²+2m-5=0 | | 2x-4+5=-3 | | -b-15=—21 | | -2(x+8)=-10 | | g+3.75=-4.15 | | 3(x+4)=33 | | 21-17/10*55=14a | | 16.35=(2∗1−1)*340/(4∗x) | | x+5=110 | | 16.35=(2∗1−1)340/(4∗x) | | 16,35=(2∗1−1)*340/(4∗x) | | 200x-125x+43425=45000-150 | | (x/4)-1=9 | | 6–4w=18 | | Y=-1/3(3y)-2 | | 10=10q–10 | | 63=-9b+2b | | -5a-12=3 | | 4n=1/2(2-2-12) |